The First Seal Hunter Families on Gotland

On the Mesolithic Occupation in the Stora Förvar Cave

Christian Lindqvist & Göran Possnert

The article presents some results of a joint interdisciplinary research project, *The Stora Förvar Cave and Gotland's peopling, faunal history and subsistence economy/diet development from the Boreal to the Subatlantic*, initiated by Christian Lindqvist in 1991. Its objectives include investigations of a number of crucial issues in a long-term perspective, such as the initial settlement, the early faunal history, the early subsistence economy and diet, but also the character of the Mesolithic-Neolithic shift on Gotland, by means of human and zoo-osteological, carbon isotope and ancient DNA analyses. The article presents and discusses artefact, osteological, and 13C and 14C data and interpretations concerning the duration and character of the Mesolithic occupation - temporary kill/butchering site, seasonal hunting station, semi-sedentary base camp or burial cave - as well as osteobiographical data on the identified human individuals and their burial customs.

Christian Lindqvist (CL), Archaeoosteological Research Laboratory, (Department of Archaeology, Stockholm University), Royal Castle Ulriksdal, SE-170 71 Solna, Sweden.

Göran Possnert (GP), Ångström Laboratory, 14C Laboratory, Department of Ion Physics, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden.

INTRODUCTION

The Stora Förvar Cave is situated 21.3 m.a.s.l. (at the cave mouth) on the northern part of the island of Stora Karlsö, ca. 8 km to the west of Gotland in the Central Baltic Sea (figs. 1-2). The first hunters, according to AMS-dates on bone collagen, arrived on the island of Stora Karlsö about 7,200 cal. BC at the latest. It is probable that they came along the south-east Swedish coast via the Baltic island of Öland and across the Ancylus Lake to Stora Karlsö, where the distance was shortest, although there are of course other possibilities. The distance from the Swedish mainland to Gotland is a good 80 km. The distance from the east Baltic coast is ca. 140-150 km and from the south Baltic coast ca. 225-230 km. Since the early Mesolithic material culture on Gotland – perhaps due to the importance of marine hunting – especially concerning the flint and bone/antler artefacts, is fairly unsophisticated compared to its mainland counterparts, it is not possible to connect it with any particular source area on

Current Swedish Archaeology, Vol. 7, 1999
the mainland, where the material culture was adapted to terrestrial large game hunting, for example of aurochs, elk, red deer, roe deer and wild boar.

The Stora Förvar Cave was excavated by Lars Kolmodin and Hjalmar Stolpe in 1888-93. In spite of its importance (the very well-preserved faunal and human remains, the long layer sequence, etc.) the material has to a large extent not yet been analysed and published. During the last seven years, one of the authors (CL) has analysed the faunal and human remains from one of the excavation areas (parcelle G, with a 3.3 m deep deposit excavated in 30 cm spits, see figs. 3-4, tab. 1), together with faunal remains from ten other Mesolithic dwelling sites as well as some Neolithic materials from main Gotland.

The cultural layer in the inner part of the cave seems largely to have been composed of ashes, probably due to the continuous existence of a large hearth, which is clearly visible in a photo taken over a century ago by one of the excavators, Hjalmar Stolpe (fig. 4). Although fire-damaged bones are generally uncommon finds, fairly numerous burnt bones are found in parcelle G, level 8 (G.8), that is, just below the Neolithic cultural layer beginning in G.7. Among these burnt bones are also found charcoal and some charred hazelnut shells. A hazelnut shell from G.8 has been AMS-dated to 7795 ±105 BP (UA-2937), 6,696–6,465 cal. BC (1 σ). Since there are cut-marks on several of the seal bones and since numerous flints were found in the ashly cultural layer, the skins, meat and fat were probably processed beside a hearth in the cave. This activity was most intensive during a few hundred years, ca. 7,300-7,000 cal. BC, and interrupted less than a millennium later, about 6,200 cal. BC, perhaps due to the flooding of shore terrasses up to 18-20.5 m a.s.l. by the first Litorina transgressions. The same thing seems to have occurred at Visborgs Kungsładugård in Visby country parish (Lindqvist 1997c:102, fig. 6). On this occasion three known shore-bound dwelling sites on main Gotland, Strå kalkbrott in Bunge parish, Gisslause in Lärbro parish and Svalings in Gothem parish, were flooded and covered with Litorina shore gravel (fig. 1). This could have had a negative effect on the grey seal rookeries on the island of Stora Karlsö and on the Gotland coast, and in combination with the intensive hunting of young seals – there were perhaps about a thousand seals deposited in the Mesolithic layer in the Stora Förvar Cave – it could have caused a decline in the grey seal population (Pira 1926:130-131; Clark 1976:114-116;
The First Seal Hunter Families on Gotland

Fig. 1. a-b. The location of the Mesolithic sites mentioned in the text. The earlier Mesolithic dwelling and burial sites (left map) and the later Mesolithic dwelling sites (right map). These sites have yielded preserved faunal and/or human osteological remains.

Fig. 2. (left) The island of Stora Karlsö with the location of the Stora Förvar Cave. Other caves in the klint and the raised beaches of the Ancylus Lake and the Litorina Sea are marked, as is a freshwater fen ('Myren') and three other freshwater wells.

Fig. 3. a-b. (right) a. Section drawing through the Stora Förvar Cave in eastern view (after Stenberger in Schnitter & Rydh 1940:62 fig.23) (top). The excavation areas (A/B-I) and the approximate extension of the preceramic Mesolithic layer (black and hatched) are marked. b. Plan over the cave (after Schnitter & Rydh 1940:21 fig.11) (bottom). The broken lines in both drawings show the surface of the cultural layer at the beginning of the excavation. The vertical scales delimiting the G area show the excavation levels, comprising 30 cm each.

Current Swedish Archaeology, Vol. 7, 1999

It is significant that so few terrestrial species are represented in the faunal remains from the Mesolithic dwelling sites on Gotland, that the meals seem to have been composed to 99% of marine foodstuffs. The Mesolithic (and Neolithic) subsistence economy, seasonality and faunal history of Gotland have recently been summarized elsewhere (Lindqvist & Possnert 1997c:35, 39-44, 51-64, 73-76, 79-81; Lindqvist & Storå 1997:22-23). The grey seal cubs were apparently mainly hunted during the winter or spring, but the ringed seals were hunted during the late summer and autumn. The salmon were caught during the summer half of the year. Migrating aquatic birds and hares were mainly caught during the autumn/winter and spring. Initially mountain hare (Lepus timidus) was present on the islands of Stora Karlsö and Gotland, and later red fox (Vulpes vulpes) appeared. These species may have crossed the sea on fairly thin winter ice. The presence of dog, hedgehog or field mouse has not been proved during this earlier Mesolithic period on Gotland, but they appear later during the final Mesolithic or Neolithic periods. This is due to the fact that Gotland is a zoogeographically isolated island in the central Baltic Sea, and quadruped terrestrial animals may only have crossed the Baltic Sea on winter ice, on floating tree trunks, or were unintentionally transported by man in canoes, rafts, etc. The access to boats or large canoes, which are depicted on the hunters' Stone Age rock engravings along the North Fennoscandian coasts (Lindqvist 1983:3-6, 1984:24-27, 1994), was naturally a prerequisite for the human settlement of Gotland, as well as for a successful sea mammal exploitation and fishing during a period with a milder climate than today. During the earliest period of occupation, according to the animal bone material from levels G.II-8 in the Stora Förvar Cave, there apparently was a breeding colony of hundreds of grey seals (Halichoerus grypus) on the island of Stora Karlsö. The climate during the postglacial climatic optimum late Boreal and early Atlantic periods was warm, and the mild winter ice conditions seem to have favoured the grey seal, which fairly recently may have immigrated from the north Atlantic Ocean. It may have immigrated into the Yoldia Sea across the Närke Strait in Middle Sweden, and then established a population that became isolated in the Ancylus Lake. The warm climate is also indicated by the rare occurrence of the ringed seal (Phoca (Pusa) hispida), which demands firm ice during the breeding season (Lindqvist & Possnert 1997c:39-44, 51-64). The early occurrence of water chestnut (Trapa natans)

Fig. 4. The section of the 3.3 m deep cultural layer between parcelles G and F during the excavation in 1891-92 of the Stora Förvar Cave. The lower third is composed of preceramic (Mesolithic) levels (G.II-8). Ash lenses and ash horizons, and the ash of a hearth a little to the left of the middle, are clearly seen. The stratigraphy does not seem to be disturbed by burials. In the foreground, finds in the base level of the F area seem to be marked with sticks. Large roof-fall rocks made the excavation difficult. Photo: Hjalmar Stolpe. 1891-92.

Current Swedish Archaeology, Vol. 7, 1999
The First Seal Hunter Families on Gotland

69

Fig. 5. The two slotted bone points from G.7 and G.6 in the Stora Förvar Cave. (Drawings by CL). The Stora Bjärs slotted bone point is shown for comparison. (After Arwidsson 1979:21 Fig. 4; without scale)

pollen in a core from Mästermyr on Gotland (Persson 1978:29, fig. 23), may also be interpreted in this direction.

In spite of the access to the large seal resource, it is a little mysterious that people chose to settle on Gotland, which lacked other terrestrial game than hare. They probably were quite surprised when they realized that this large island – in spite of a lush vegetation and plenty of fresh water – entirely lacked large terrestrial game. The almost total lack on Gotland (except possibly in the Stora Bjärs grave in Stenkyrka parish) of formal geometric microlithic tools and microblade cores, which are typical forms in the material culture on the mainland, is probably due to this lack of large terrestrial game on Gotland and the island of Stora Karlsö. The two so-called bird arrowheads, that is slotted bone points, a typical artefact in the Maglemosian techno-complex during the late Boreal and early Atlantic zone on the mainland (Lidén 1942; Welinder 1971), from G.7-6 in the Stora Förvar Cave (Rydh 1931:28, fig. 9; Schnittger & Rydh 1940:65, Pl.1:1) and one from the Stora Bjärs grave (Arwidsson 1979:21 fig. 4) (fig. 5), which all lack adhering flint edges, are made of terrestrial animal extremity bones and were apparently imported from the mainland.

The flints found in the Mesolithic levels in the Stora Förvar Cave, which mainly comprise blades (and flakes) chipped out of local ordovician flint pebbles, include several ‘conical’ platform cores and small splinters, some scrapers and occasional borers, indicating a local manufacture and use of blades and flakes for skinning and butchering purposes inside the cave. Flints and rare bone tools can also be found among the animal bones (fig. 6).

Was the purpose of the occupation simply to extract the seal skins, and was the Stora Förvar Cave merely the butchering place and midden for seal carcasses of a hunting station (Knape & Ericson 1988:33-35 fig. 2; Ericson & Knape 1991:201-202), where the seals were killed by small bands of adult male hunters who perhaps travelled the 80 km from the mainland to stay only during limited seasons? Or did whole families of marine-adapted semi-sedentary hunters live in the cave for longer periods, extracting seal meat and blubber, fishing and catching birds, gathering hazelnuts and other plant food, tending fires for heating and cooking, chipping flints, chipping and grinding stone axes, making bone and wooden tools, scraping hides and building boats?

Due to the identification of a 4-6 month old infant, two ca. 10-14 year old youngsters,
one of them a girl, a 14-21 year old young man, at least one young woman and two young men, an adult/mature woman, at least one adult man, it is not likely that the cultural layer in the Stora Förvar Cave has been deposited during temporary visits to a seasonal hunting camp. A more permanent occupation is also indicated by the 1.2 m deep Mesolithic cultural layer consisting of ash and containing enormous amounts of seal, bird and fish bones, that point to plentiful resources the year round. The layer also contains numerous flint blades, flakes, some conical platform cores and stone axes, indicating tool making in the cave.

THE HUMAN BONE MATERIAL

Early finds
During the excavation of the Stora Förvar Cave, two human crania and postcranial bones were found in 1890 at a depth of 3-3.5 m in excavation area D about 7-8 m inside the entrance of the cave. The crania were said to possess sloping foreheads, robust superciliary arches and nuchal crests, and the excavators seem initially to have associated them with the Neanderthal skulls found in 1856 in the Feldhofer Cave near Düsseldorf in Neanderthal, Germany and in 1886 in the Spy Cave, Namur, Belgium (Boule & Vallois 1957:196, 198-199; Gore 1994:8-9; Stringer & Gamble 1994:13-14).

The crania and extremity bones showed remarkable traces of work (cut-marks and splitting), that were interpreted as signs of (butchering and) marrow-extraction and hence cannibalism. Although Gustav Retzius, in a lecture addressed to the Swedish Society for Anthropology and Geography in November 21 1890, noted that the skulls were not of the same primitive type as the Neanderthals, he interpreted the marks as signs of cannibalism (Retzius 1890; Rydh 1931:23, 41-42; Schnittger & Rydh 1940:38-39, 42, 46-48). Unfortunately, the two crania seem later to have disappeared. Carl Fürst wrote about the remarkable marks on the human bones in letters dated 1912 and 1925, but it is unclear whether he had access to the skulls or not.

A drawing found in Lars Kolmodin’s file in ATA can perhaps mediate the spirit of the times more than a century ago among the excavators on the island of Stora Karlsö in particular and among Swedish archaeologists and anthropologists in general. The drawing is humorously titled ‘A Karlsö-aristocrat 3000 years ago’, and the artist may have used a known person at the excavation on Stora Karlsö as a model for this caricature. Although the nose and chin are ‘aristocratic’, the forehead is low and sloping and the superciliary arch is protruding (fig. 7).

The lost crania from the Stora Förvar Cave were intensively searched for, but in vain. On June 28 1930, Axel Bagge stated that the importance of the Stora Förvar skulls was to a large extent exaggerated, and that the information needed about the earliest humans on the Baltic shores could just as well be supplied by other Swedish Stone Age human crania, that is, from megalithic graves in Västergötland. This was, as we shall see, a misinterpretation. In fact, the earliest Stora Förvar Cave humans are not only earlier in date than the megalithic tombs, but also earlier than the Bäckaskog burial in Scania.
The abundance of Mesolithic human bones per skeletal element in area G in the Stora Förvar Cave on the island of Stora Karlsö, Eksta parish, Gotland. A total of fifty human bones were identified from the original preserved material excavated by Lars Kolmodin and Hjalmar Stolpe in 1888-93 in the preceramic levels (G.11-8) of the cave. Almost all skeletal elements are represented. However, the fifty human bones comprise less than 1% (ca. 0.3% or 3‰) of the almost 16,000 seal bones in the Mesolithic levels in area G. (NISp. = No. of Identified Specimens.)

Recent finds
When analysing the excavation material from parcelle G, several new human bones were identified that might shed light on the character of the earliest occupation. This material is accounted for in the diagram above (fig. 8), and more in detail in the following text and figures (figs. 9-16).

The Stora Förvar Cave children
Individual no. 1. Very interesting are the finds of ten bones, mainly extremity bones (1 Costa, 1 Scapula dx., 1 Humerus dx., 2 Radii, 2 Ulnae, 2 Tibiae, 1 Fibula sin.) (fig. 9), of an infant from G.10 in the Stora Förvar Cave among enormous amounts of seal bones from the Mesolithic cultural layer. The living age estimation implies the first part of the infans I interval. Based on the length of the extremity bones, the living age may be more specifically estimated to 4-5 (up to 6) months, implying that this was in fact a suckling baby (after comparisons with reference material in Johnston 1962; Stloukal & Hanáková 1978; Hoffman 1979. See fig. 10a-e). The body length of the infant is estimated to ca. 65-70 cm (after Kósá 1989).

In the diagrams (fig. 10a-e) the bone lengths of the Stora Förvar Cave infant are plotted against a presumed living age of 4 months and compared to the length of extremity bones of known living age. Since the age according to comparisons with Medieval Czech children is estimated to be between 4 and 6 months (after Stloukal & Hanáková 1978), and since this approximation corresponds well with the age and extremity length of recent North American children (after Hoffman 1978), the true living age is probably to be found in this interval.

This individual is AMS ¹⁴C-dated on bone
Very interesting are the finds of ten, mainly extremity, bones of an infant (individual no. 1), all from G.10 in the Stora Förvar Cave. The living age of this infant is estimated to 4-6 months, i.e. it was a suckling baby, and the stature is estimated to about 65-70 cm. According to a 14C-dated lower arm bone, this child belonged to the earliest inhabitants of the cave. (Drawings by CL. The bones are marked in black in their respective anatomical positions in the skeleton to the left.) (Scale in cm)

Collagen to 7,256-7,004 cal. BC, after the subtraction of 100 years due to the reservoir effect (tab. 2).

Conclusions concerning the cause of death cannot be reached through the morphology of the baby’s bones, which look healthy, but when they have been thoroughly analysed concerning their chemical content it may be possible to say whether the baby perhaps died from malnutrition.

The δ13C-value, −18.0‰ vs PDB, of the Stora Förvar infants bone collagen is about 1‰ more marine than the adult individuals (tab. 2), which may be explained by accumulation during the suckling. Provided the mother consumed a lot of grey seal liver or salmon meat, this might have caused hypervitaminosis A or D in the suckling infant.

Women of some marine-adapted groups known in historical times, e.g. the Northwest Coast Indians, seem to have avoided too much sea mammal and salmon meat during pregnancy and lactation, and instead concentrated on gathered terrestrial animal and plant food, since it seems to have been known that small children are sensitive to, and indeed may die from, hypervitaminosis, i.e. overconsumption of e.g. (A- or) D-vitamin from e.g. (carnivore liver and) salmon meat (Lazenby & McCormack 1985 via Klepinger 1992:125). Too much animal protein in the diet may also result in osteoporosis, which is known among Inuits (Thompson et al. 1983; Beall 1987 via Klepinger 1992:125).

The living age of the infant, individual no. 1, from G.10 in the Stora Förvar Cave according to Humerus length (mm) seems to correspond to about 4 months. (Averages and corrected averages according to reference material in Milan Stloukal & Hanáková 1978:53-69, Tab.4).
The early Mesolithic settlement on Gotland in the central Baltic may not have had any previous experience of such hyper-vitaminosis (A or) D, since they obviously had only recently moved from the mainland, where terrestrial herbivore meat predominated in the diet. Hence, they may not yet have known how to cope with this kind of malnutrition, or rather nutritional excess.

The malnutrition/nutritional excess hypothesis is supported by the fact that the bone collagen $\delta^{13}C$-value of the baby is higher than the adults', instead of vice versa as among the Northwest Coast Indians (Chisholm et al. 1983) for which Lazenby and McCormack hypothesized an age-specific dietary specialization, as well as among pregnant and lactating women, in response to the previous effect of hyper-vitaminosis D caused by high salmon consumption (Lazenby & McCormack 1985). The bone samples of the following individuals all have ca. 1‰ higher $\delta^{13}C$ values than the contemporaneous seal bones, which is in agreement with a diet mainly composed of seal products.
Individuella no. 2 and 3. Also interesting are three thin, gracile cranial fragments (2 Frontale. sin. and dx., 1 Parietale sin.) (fig. 11) from G.10 and G.8 in the Stora Förvar Cave, which are from two children just before the teenagers, one of them probably a girl. The living age estimation based on bone thickness and morphology corresponds to the later part of the Infans II interval or the transition between the Infans II and Juvenilis intervals, i.e. 10-14 years. To judge from the sharp edge of margo supraorbitalis, the frontal bones may belong to a girl. These individuals has only recently been AMS 14C-dated on bone collagen from a parietal bone (individual no. 2) to 7,293-7,032 cal. BC (δ^{13}C: -18.4% vs PDB) and from a frontal bone (individual no. 3) to 6,603-6,453 cal BC (δ^{13}C: -17.7% vs PDB) (tab. 2).

The average of 24 measurements of the two gracile frontal bone fragments is only 1.88 mm (0.82-3.08 mm), and the average of 13 measurements of the fairly thin parietal fragment is 2.72 mm (1.76-3.67 mm). Hence, there is a 0.84 mm cross-section difference, which may indicate a slight difference in living age. The sphenofrontal sutures in both frontal bone fragments are of course entirely unobliterated. The frontal bones are very well preserved and have a more yellowish colour, and the parietal bone is slightly more eroded and has a more whitish colour. These small but noticeable differences seem to indicate that the frontal bones and the parietal bone derive from two different individuals, which is further supported by the 430 year difference in 14C-date and the 0.7% difference in δ^{13}C value.

The Stora Förvar Adolescents

Individual no. 4. A number of bones from a foot (Calcaneus sin., Cuneiforme intermediate (II), Metatarsus I dx., M.t. IV dx., M.t. V dx.), a lower leg (distal Tibia dx., Fibula dx. with loose epiphyses) etc. (fig. 12) are from a male in the Juvenilis interval (10-21 years), or more exactly the upper teenagers, ca. 14-21 years old (based on bone fusion sequences after Warwick & Williams 1973; Szilvássy 1988; Bass 1987; Ubelaker 1989; Sorg, Andrews & Iscan 1989). That it concerns a young male is indicated by the partly loose epiphyses and the robustness of the bones. It is also confirmed by a juvenile Coxae, pubis sin. of male type. The above is apparently also confirmed by three unfused sacral vertebrae (Vertebrae sacrale). Two right and left 'unfused' and unburnt zygomatic bones (Zygomaticum) from G.10 and G.8 (left bone: fig. 16a), probably belonging to the same individual, (and possibly an unburnt right frontal bone fragment with unobliterated sutura coronalis described under individual no. 5, fig. 15a), seem according to virtually identical AMS-dates and δ^{13}C-values recently conducted also belong to this individual. The 'unfused' frontal processes of these zygomatic bones do not fit together with

![Fig. 11. Also interesting are three thin gracile cranial fragments from G.10 and G.8 in the Stora Förvar Cave, that seem to represent two individuals (individual 2 and 3) just before the teenagers, 10-14 years old. One of them was probably a girl, which according to a 14C-dating lived during a later part of the early occupation, whereas the other belonged to the earliest inhabitants of the cave. (Drawings by CL. The frontal bones are marked in black in their respective anatomical positions in the skeleton to the right.) (Scale in cm)](image-url)
Fig. 12. The earliest human 14C datings from Gotland, almost 7,500 years cal. BC, are associated with a number of lower leg and foot, and probably cranium and pelvis, bones of a young man in the later teenages, 14-21 years (individual no. 4), from the levels G.11-10 and G.8 in the Stora Förvar Cave. The living age of this young man was probably about 18 years, and the stature is estimated to about 174 cm. (Drawings by CL. The bones are marked in black in their respective anatomical positions in the skeleton to the right and the cranium in the middle, although the clavicle and frontal may belong to other individuals.) (Scale in cm)

the 'unfused' zygomatic processes of the unburnt frontal bones of individual no. 3 (fig. 11) or the burnt frontal bone of individual no. 6 (fig. 14a). These zygomatic bones are also relatively smaller and more gracile than the very robust zygomatic bone of individual no. 10 (fig. 16b).

The stature of the juvenile male may, based on lengths of a heel bone (Calcaneus length: 84.67 mm) and first metatarsal (Mt I length: 63.74 mm), be approximated to 174 ±6 cm (after comparisons with reference materials in Holland 1995; Byers, Akoshima & Curran 1989). This individual is AMS 14C-dated on bone collagen to 7,567-7,037 cal. BC (δ13C:-18.9- -19.2‰ vs PDB) (tab. 2). When the recently conducted AMS-datings and 13C-analyses on cranial bones and further osteological analysis are included, there seem to be totally two to four adolescents/young adults represented in the Mesolithic cultural layer in parcelle G. Of these at least two are males.

Individual no. 5? An unburnt frontal bone fragment (Frontale dx.) from G.9 of medium thickness (cross-section: 1.83-5.25 mm; average of 18 measurements: 3.91 mm), with unobliterated sutura coronalis, apparently represents a young adult of unknown sex, but possibly a male. Had this individual been older than 30 years, the ecto- and/or endocranial suture obliteration had probably begun, and the living age may according to the lack of suture closure possibly be approximated to the 18-29 years interval (Buikstra & Ubelaker 1994:33-38 fig. 12a; Masset 1989:93, Tab. 4.4). (fig. 15a). This bone has recently been AMS 14C-dated on bone collagen to 7,499-7,307 cal BC (δ13C:-18.1‰ vs PDB) (tab. 2). Due to the virtual identity in date, there is a possibility that the unburnt frontal bone belongs to individual no. 4, although the 13C-value is 0.8-1.1‰ higher, and the living age seem to have been slightly higher than in individual no. 4. This unburnt right frontal bone fragment also seems to
Fig. 13. A number of lower arm and hand bones, associated with a ¹⁴C date in the later part of the early occupation, and probably a clavicle and a pelvis-bone fragment, belong to an adult or mature woman (individual no. 8) from the levels G.10 and G.8 in the Stora Förvar Cave. The living age of this adult woman was probably higher than 26-30 years and the stature is estimated to about 160 cm. (Drawings by CL. The bones are marked in black in their respective anatomical positions in the skeleton to the left.) (Scale in cm)

belong to a different individual than the burnt right frontal bone fragments of individual no.6.

Individual no. 6. A fire-damaged fragmentary right frontal bone (Frontale dx.) assembled of three fragments from G.10 and G.8, with the whole external surface covered by cut- and scrape-marks (fig. 14a), may – according to its size (max. length: 91.43 mm) and medium thickness (average cross-section: 4.55 mm [2.76-5.79 mm, n=18]; arcus superciliaris: 7.03 mm), its completely unobliterated sutura coronalis, its rounded margo orbitalis and relatively marked arcus superciliaris – derive from a fairly young, male, individual, possibly of about the same or somewhat higher living age as individual no. 4. Had the individual been older than 30 years, the ecto- and/or endocranial suture obliteration had probably begun, and the living age may according to the lack of suture closure possibly be approximated to the 18-29 years interval (Buikstra & Ubelaker 1994:33-38, fig. 12a; Masset 1989:93, tab.4.4). (fig. 12). Two burnt fragmentary occipital bone fragments (Occipitale) from G.8 may belong to the same individual. Since these bones are fire-damaged they have not been dated.

Individual no. 7? A sternally unfused, fairly gracile and short (length: 136.87 mm) clavicle (Clavicula sin.) indicates a young woman probably less than 18-23 years and at least younger than 26 years. (Due to the similarity in living age, that is adolescent or young adult, there is a possibility that the bone belongs to one of the juvenile males (individual no. 4, 5? or 6), although this appears less likely, since this clavicle is shorter than the average length of female clavicles.) This bone is fire-damaged and has not been dated.

Current Swedish Archaeology, Vol. 7, 1999
The Stora Förvar Adults

INDIVIDUAL NO. 8. A number of completely fused bones from a hand (Metacarpus II dx., M.c. III dx., Phalanx 2) and lower arm (2 Ulna dx.) etc. (fig. 13) are from an adult woman (the adultus interval, or perhaps in mature age, the maturus interval), which is also indicated by a short, but fairly robust, sternally fused clavicle (Clavicula dx.). The latter indicates a living age above 26-30 years. A hip-bone fragment (Coxae dx.) with completely synostosed acetabulum and fused tuber ossis ischi, confirms the existence of an adult individual older than 16-21 years. The stature of the adult woman, based on the length of metacarpals (M.c. II and M.c. III), may be approximated to 160 ±5 cm (after Musgrave & Harneja 1978). This individual is AMS 14C-dated on bone collagen to 6,182-6,003 cal. BC (δ13C:-17.7‰ vs PDB) (tab. 2).

INDIVIDUAL NO. 9. A thick (cross-section: 5.16-7.57 mm; average of 7 measurements: 6.40 mm) robust fire-damaged parietal bone fragment (Parietale) from G.10 probably represent an adult male (fig. 15b). This bone is much too robust to belong to the same individual as the bones described under individual no. 2-8. Since this bone is fire-damaged it has not been dated.

INDIVIDUAL NO. 10. A markedly robust but 'unfused' left zygomatic bone (Zygomaticum) (fig. 16b) from G.7, probably indicating the existence of a young adult male individual, has been AMS 14C-dated to 4,246-3,987 cal. BC (δ13C:-16.25‰ vs PDB) (tab. 2). This is the only hitherto known late Mesolithic human bone from Gotland.

Two recently conducted AMS-dated cranial bones are contemporaneous to individual no. 4, and very close in date to individuals no. 1, 2 and 5. Whereas the bones of individuals no. 2 and 3 are of too young individuals, which also have different δ13C values, there is a possibility that the dated frontal and especially the zygomatic bone may derive from individual no. 4, although the latter individual is probably also too young, especially compared to the frontal bone. This is supported by the similarity in 14C dates and δ13C values between individual no. 4 and the zygomatic, and the dissimilarity in δ13C values, with a 0.8-1.1‰ difference, between individual no. 4 and the frontal bone, which probably represents a separate individual.
(individual no. 5?).

Additionally there are a number of *Vertebrae* and *Costae*, apparently belonging to various individuals, some of them mature. Three sacral vertebrae probably belong to individual no. 3.

Hence, there are at least four hitherto dated individuals from the ca. 8,300-8,200 BP (c. 7,500-7,000 cal BC) interval, and three dated individuals later than 7,900 BP in the Mesolithic levels from the cave and one from G.7. Including the undated fire-damaged cranial bones, and the fire-damaged clavicle, totally 9 or 10 individuals are represented. Of the cranial bones only a couple are robust enough to stem from adult men; most of them seem to stem from young individuals.

ON THE STORA FÖRVAR CHRONOLOGY AND STRATIGRAPHY

Several earlier scholars have assigned the aceramic lower levels in the Stora Förvar Cave to the Vrå/Säter II period, which was apprehended as corresponding to the period of the so-called axe dwelling sites, thought to be contemporaneous with the *dolmen* period, approximately 5,000/4,500 BP (Nihlén 1927:65; Rydh 1931:11, 19; Schnittger & Rydh 1940:65, 75, 78-79; Stenberger 1964:96, 102; Clark 1976:115, fig.1; Knape & Ericson 1983:169, 172, 1988:31, 33, 35; Ericson 1989:192-193, 198; Ericson & Knape 1991:198, 202-203). This is, according to our artefact and osteological studies and dating results, obviously a misinterpretation. However, Henric Munthe (1940:197, 225, 1954:697) claimed that the two so-called bird arrowheads, that is slotted bone points of Lidén's type A (Lidén 1942:28-30) from G.7-6, which are typical artefacts for the Maglemosian technocomplex during the late Boreal and early Atlantic zones and the final *Ancylus* and early *Mastogloia* stages (Welinder 1971), were associated with the first occupation in the Stora Förvar Cave and that it occurred already during the *Ancylus Lake* stage. Also Mats Malmer (1962:940) assumed the presence of Mesolithic layers in the cave. In a couple of lectures given at the Dept. of Archaeology, Stockholm University, in 1982 and 1984 one of the authors (CL) claimed that these early levels (G.11-8) must be Mesolithic. This conclusion was based on the almost total lack of pottery finds in the lower levels; that the flints in this preceramic cultural layer were mainly composed of narrow and thin blades apparently pressed from several conical platform cores, whereas there are relatively more wide and thick flakes in the ceramic cultural layer; and that the fauna also differ markedly from the fauna in the ceramic cultural layer. A calculation, based on the assumption that the sedimentation rate had been constant throughout the stratigraphy, and according to which the base level could be dated approximately to 6,000-6,500 BP, was also presented.

Furthermore, in a lecture given by us (CL and GP) at the Department of Archaeology in Stockholm in 1993 (as well as at international conferences, for instance in Esbjerg in 1993 and in Copenhagen 1998), we presented a new chronological interpretation based on a series of AMS 14C dates on human and animal bone collagen from the cave, implying that the levels G.11-8 in fact comprised the earliest known Mesolithic cultural layer on Gotland, and that there was a chronological and stratigraphical hiatus between ca. 7,440 and 5,500 BP (See tab. 2 and figs. 17-18).

Since datings on bone collagen of marine-adapted humans are – in this case due to the consumption of grey seal and salmon, and later harp seal, porpoise, cod and herring – more or less affected by the reservoir effect, and as such show an apparently older age than dates conducted on contemporaneous terrestrial material, and since the degree of the reservoir effect on bone material from various Baltic stages in prehistoric time was unknown, we also made datings on mountain hare (*Lepus timidus*) bones found in the same layers as the human bones described above.
Since the hare as a terrestrial species is unaffected by the reservoir effect, dates on hare bone are more reliable than on bone collagen of seal and marine-adapted man; the latter is apparently influenced by a reservoir effect of about 100 years in contrast to the hare bones during the early Mesolithic on Gotland, and seem to give somewhat earlier datings (fig. 17).

Four calibrated AMS-datings of mountain hare bone collagen from the lower levels (G.11-7) in excavation area G in the Stora Förvar Cave indicate that the first and most intensive occupation and seal exploitation occurred between 8,200 ±125 and 7,715 ±80 BP, i.e. 7,420-6,429 cal. BC (1 σ) (See fig. 17). Hence, the earliest Stora Förvar AMS-dates are – as well as the AMS-dates from Stora Bjärs and Bäckaskog – well within the expected chronological and quaternary geological interval for slotted bone points in general and more specifically for Lidén’s type A (Lidén 1942), that is the late Boreal/early Atlantic zones and final Ancylus/early Mastogloia stages, and generally confirm Munthe’s and Althin’s, and exactly confirm Welinder’s, typological and quaternary geological datings of these finds (Munthe 1940, 1954; Althin 1950, 1951; Welinder 1971).

The δ13C values in human bone collagen were gradually rising over time, from −19.2/-18.0% during the transition between the final Ancylus and early Mastogloia stages (ca. 8,300-8,200 BP) – when the Öresund Strait opened up and the change according to the diagram initially was fairly abrupt – to a maximum of −16.2/-15.0% during the later Litorina stages (ca. 4,200-4,000 BP) (fig. 18). This apparently reflects the gradually rising salinity and the mixture between the fresh, ‘young’ water from the Baltic rivers, containing much atmospheric carbon, and the saline, ‘old’ water from the Atlantic Ocean, where the carbon had already decayed during some time, within the Baltic Basin (Lindqvist & Possnert 1997a:73-74, 1997c:51-64).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Locality} & \text{Ind. No.} & \text{Skeletal element} & \text{Living age} & \text{Sex} & \text{14C date BP} & \text{δ13C % vs PDB} & \text{Lab. No.} \\
\hline
\text{St Förvar G.10} & 4 & \text{Fibula, dx.} & \text{Juvenilis} & \text{Male} & 8555 ±135 & -19.2 & \text{Ua-3132} \\
\text{Li} & 4 & \text{M.t.IV. sin.} & \text{Juvenil./Ad.} & \text{Male} & 8340 ±100 & -18.9 & \text{Ua-3789} \\
\text{Li} & 4 & \text{M.t. I, sin.} & \text{Juvenil./Ad.} & \text{Male} & 8270 ±75 & -19.2 & \text{Ua-2918} \\
\text{Li} & 4 & \text{Zygomatic, dx.} & \text{Adult?} & \text{Male?} & 8360 ±95 & -18.9 & \text{Ua-13554} \\
\text{Li} & 5? & \text{Frontale, dx.} & \text{Juvenil./Ad.} & \text{Male?} & 8380 ±85 & -18.1 & \text{Ua-13555} \\
\text{Li} & 2 & \text{Partietae, sin.} & \text{Infans II} & - & 8260 ±95 & -18.4 & \text{Ua-13407} \\
\text{Li} & 1 & \text{Ulna, sin.} & \text{Infans I} & - & 8220 ±95 & -18.0 & \text{Ua-3788} \\
\text{Kambis} & \text{II} & \text{Tibia} & \text{Adult} & \text{Female} & 8050 ±75 & -18.0 & \text{Lu-1983} \\
\text{Li} & ? & ? & ? & ? & - & \text{-17.9,-19.1} & \text{Lu-1983} \\
\text{St Bjärs} & \text{St Förvar G.10} & \text{Dens M} & \text{Ad./Matur.} & \text{Male} & 7970 ±80 & -17.8 & \text{Ua-10426} \\
\text{St Förvar G.10} & 3 & \text{Frontale, sin.} & \text{Infans II} & \text{Female?} & 7830 ±90 & -17.7 & \text{Ua-13406} \\
\text{Li} & 8 & \text{M.c. II, dx.} & \text{Adult} & \text{Female} & 7440 ±85 & -17.7 & \text{Ua-2930} \\
\text{Li} & 10 & \text{Zygomatic, sin.} & \text{Adult} & \text{Male} & 5500 ±95 & -16.3 & \text{Ua-3130} \\
\text{Alby} & \text{XXV} & \text{Dens} & \text{Adult} & \text{Male} & 5260 ±70 & -15.4 & \text{Ua-2333} \\
\text{Li} & \text{St Förvar G.10} & \text{Os} & \text{Adult} & \text{Male} & 5200 ±150 & -17.0 & \text{Ua-1713} \\
\hline
\end{array}
\]

*) Published in Larsson 1982:12-13; ++) Published in Lidén 1995:VI:9, Tab. 1; #) Published in Königsson et al. 1993:32-34, Tab. 1.

Table 2. Uncalibrated AMS (and conventional) radiocarbon dates conducted on Mesolithic human bones from Gotland and the island of Stora Karlsö in an aquatic/marine adapted context. (A late Mesolithic human date from grave 25 at Alby in Hulterstad parish on Öland is included as a comparison to the late Mesolithic human date from G.7 in the Stora Förvar Cave.)
80 Christian Lindqvist & Göran Possnert

Fig. 17. Uncalibrated AMS-datings on human and animal bone collagen (and a hazelnut shell) from the various excavation levels (11 to 3) in excavation area G in the Stora Förvar Cave. Observe the chronological and stratigraphical hiatus between ca. 7,400-7,300 (in level G.8-9) and ca. 5,500-5,200 BP (in level G.8-7). (Domestic animal bone dates from the Mesolithic levels are excluded. They are, as expected, intrusive.)

$\delta^{13}C$ values, ca. -19–21% after 5,000 BP, definitely indicate a terrestrial diet, probably mainly based on introduced domestic animals, a diet that during a limited period was changed back to marine adaptation during the late Middle Neolithic (Lindqvist & Possnert 1997b:152-153, 1997c:55-58, tab. 17, fig. 5; 60-62, fig. 6a-c; Lindqvist 1997b:372, fig. 6).

The occupational interruption during the later part of the Mesolithic indicated in figs. 17-18 (see also tab. 2) may have various causes. The most probable is that the early Litorina transgressions flooded the shores of the island of Stora Karlsö in such a way that it became less attractive to the grey seals. It may also have made the access to the Stora Förvar Cave entrance less convenient, which perhaps may have caused the inhabitants to move to another cave situated at a higher altitude. As has already been stated, at least three shore bound Mesolithic dwelling sites on main Gotland (Strå kalkbrott in Bunge parish, Gisslause in Lärbro parish and Svallingas in Gothem parish) dated to about 6,000 cal BC had to be abandoned when they became flooded and covered by Litorina gravel, and a dwelling site on a higher altitude (Visborgs Kungslandugård in Visby country parish) was abandoned when the nearby shore below the klint was flooded (Lindqvist 1997c:102, fig. 6).

This chronological and stratigraphical hiatus clearly observed between the human collagen AMS-dates 7,440 BP in G.8 and 5,500 BP in G.7 (tab. 2, fig. 17-18), that is with a duration of almost two millennia, is also found among the animal bone dates. Hence, there are hitherto no animal bone dates between a salmon (Salmo salar) bone from G.9 AMS-dated to 7,315 ± 85 BP (Ua-4192) and a cod (Gadus morhua) bone from G.7 dated to 5,435 ± 135 BP (Ua-4956) (fig. 17). The duration of the hiatus in calendar years is more difficult to express, since the earlier of the AMS-dates are less affected by reservoir effects than the later dates, which may show an apparent age of 200-300 years too early (Lindqvist & Possnert 1997a:73-74, 1997c:51-64, tab. 17a-b).

The late Mesolithic AMS-dates are followed by a series of Early Neolithic AMS-dates on domestic animal collagen from G.7.
The First Seal Hunter Families on Gotland

Fig. 18. 14C- and 14C-analysed prehistoric human bones from Gotland (including the island of Stora Karlsö). Grave 25 from Alby in Hulterstad parish on Öland is shown for comparison. (The Mesolithic dates, to the left of 5,000 BP in the diagram, are listed in Tab. 2.) The δ13C values in human bone collagen were gradually rising over time, apparently reflecting the gradually rising salinity caused by the oceanic water inflow during the Litorina Sea stage. Observe, however, the unusually rapid change during the interval ca. 8,300-8,200 BP, which probably indicates when the Ancylus/Mastogloia-transition occurred.

(Lindqvist 1997b:371, fig. 5), and a series of Middle Neolithic AMS-dates on seal and domestic animal bone collagen from G.7-5(4). If the Late Neolithic finds from G.4 are included, the Neolithic cultural layer is about as thick as the Mesolithic cultural layer, that is >1 m. These Neolithic dates are followed by Early Bronze Age and Migration period AMS-dates from G.4-3 (fig. 17). There seems to be another hiatus with a duration of more than a millennium between the Bronze Age and Iron Age AMS-dates. However, due to the occurrence of Late Neolithic and Bronze Age pottery, mainly in G.4, the absence of dates between ca. 4,000 and 1,600 BP probably is more apparent than real. This gap, which at present includes only one AMS-date, ca. 3,300 BP on sheep bone, is likely to be filled more completely when additional datings are conducted on seal and domestic animal bones from these upper levels.

INTERPRETATIONS AND CONCLUSIONS
The ca. 120 cm thick ashly preceramic Mesolithic cultural layer in the G area of the Stora Förvar Cave including enormous amounts of bones (nearly 16,000 identified bones) of seal, fish and birds, as well as numerous flints and some stone axes, indicates that the Stora Förvar Cave was not merely a hunting station of short duration. The intensive fire making in the inner part of the cave may hardly be associated with anything else than heating and cooking during longer periods of time. Indeed, it seems already from the occurrence of a suckling baby, a 12-year old girl and two women fair to say that the occupation in the cave did not merely comprise a hunting station during a very limited season. In addition, the main grey seal cub-hunting season was apparently during the winter or spring, but the ringed seals were hunted during the late summer and autumn. The salmons (and pike) were caught during the summer half of the year, perhaps the later part. Only occasional juvenile bird and hare bones have been identified, indicating the catching of migrating aquatic birds and hares mainly during the late autumn, winter and
early spring (Lindqvist & Possnert 1997c:35, tab. 3, 39-44, 51-64, 73-74, fig. 10a-c, 75-76, fig. 11; Lindqvist & Stora 1997:22-23). Taken together, this indicates that resources were available and indeed utilised more or less all the year round.

Earlier interpretations include the extreme view that the cave was merely a dump for skinned seal bodies, and that the cave was at most a temporary seal-hunting station for seal cub fur extraction (Knape & Ericson 1988; Ericson & Knape 1991). The find of skeletal remains of a suckling baby, a girl and two women in the thick Mesolithic cultural layer in the cave, however, may instead imply that the occupation was a semi-permanent base camp. Or should we interpret it the other way around: that young girls and women with suckling babies joined the men at the temporary hunting stations?

There is, however, still another hypothetical alternative: that the human remains in the cave at least partly derive from persons who had died elsewhere, and subsequently were transported to the island of Stora Karlsö. The fact that human bones, including fire-damaged cranial bones, crushed cranial bones and a frontal bone with cut-marks (fig. 14, 16), from a number of individuals of various living ages and sex have been identified among seal bones, flints, stone axes and ashes in the Stora Förvar Cave, at the same time as human bones are missing at the other Mesolithic dwelling sites on Gotland – except at Svalings, where a 4.5 ~ 3 cm cranial fragment was identified by Elias Dahr, although the find circumstances are unclear and the bone has not been possible to retrieve (Munthe, Hede & Lundqvist 1928:87; Munthe 1954:700) – may imply that separate, burial ceremonies diverging from the formalised burial customs ('hocker' graves) at Stora Bjärs in Stenkyrka parish and Kambs in Lummelunda parish on northwest Gotland (Althin 1950; Arwidsson 1949, 1979; Munthe 1954; Larsson 1982) (see fig. 1 and fig. 19a-b) occurred in the Stora Förvar Cave on Stora Karlsö. Perhaps they took place within the framework of an ancestral cult that included some peculiar activities such as skeletoning, scalping and ritual cannibalism, followed by a quite different type of disposal of human bones in the meal-scap midden inside the cave.

The frontal bone with cut-marks and the unburnt, fire-damaged or burnt cranial bone fragments, showing signs of crushing (fig. 14, 16) are not unique finds, since Palaeolithic, Mesolithic and Neolithic human skull and postcranial bones with cut-marks etc. also occur at for example Vindija and Krapina in Croatia (Gore 1996:8), Gough's Cave, Ched-

![Fig. 19a-b. The male burial from Stora Bjärs (left) and the male burial no. I from Kambs (right). The Stora Bjärs grave is AMS 14C-dated on bone collagen to 6,992-6,595 cal. BC (δ^{13}C: -17.8‰ vs PDB), and a female skeleton (no. II) from Kambs is conventionally 14C-dated on bone to 7,007-6,622 cal. BC (δ^{13}C: -18.0‰ vs PDB) (Arwidsson 1949, 1979; Larsson 1982).]
Fig. 19.c. The male grave from Stora Bjärs in Stenkyrka parish (Photo by Raymond Hejdström, Gotlands Fornsal 1994). This individual has robust zygomatics with a wide zygomatic breadth. There are also a couple of injuries: a hole in the right parietal with signs of healing and a fresh wound in the left side of the mandible. Furthermore a slotted bone point was found in the pelvis. This male had apparently been involved in some physical conflicts resulting in injuries that ultimately caused his death. This is remarkable, since the population on Gotland during the final Boreal/early Atlantic zone shift is apprehended as fairly small.

dar, in England (Currant, Jacobi & Stringer 1989:135 fig. 5–6), Dyrholm and Vedbaæk in Denmark (Mathiassen et al. 1942; Champion et al. 1984:109), Alvastra in Sweden (During & Nilsson 1991) and Jettbôle on Åland (Nuñez 1995; Nuñez & Lidén 1997). Many of the 1907-08 excavated Late Paleolithic human skulls in the Ofniet Cave near Nöldingen in Bavaria bore the marks of blows, and these individuals – like the Alvastra pile dwelling individual – had probably been beheaded after having met a violent death (Breuil 1909; Schmidt 1912; Mollison 1936; Boule & Vallois 1957:349-350). The human bone finds in the Mesolithic part of the G area in the Stora Förvår Cave may be compared with Dyrholm, where human bones were also found dispersed in the cultural layer, contrasting to the very formal burials at Vedbaæk. Although Champion et al. believes that, “The very fact of formal burial at all may denote status…” (1984:109), in a subtle way implying that many humans after death may have been disposed of unceremonially in nature or in meal-scrap middens, it is curious that except at Svalings, where a human cranial fragment apparently was found among the seal bones, human bones have not been found in the cultural layers of ten other Mesolithic dwelling sites on main Gotland. (Although the subsistence economy appears to have been quite similar on main Gotland and on the island of Stora Karlsö, the natural resources, especially concerning plant food, may have been less diversified on the latter, perhaps even causing a periodically higher mortality there.) Furthermore, the only formal Mesolithic burials on Gotland are the three from Kambs and Stora Bjärs; there are hitherto no counterparts on Gotland to the burial grounds at Vedbaæk in Denmark, Skateholm in south Sweden, Zvejnieki in Latvia, and Jushnij Olenij Ostrov in East Carelia (Russia). Although evidently not found in formal burials, the two skulls first found in the Stora Förvår Cave seem to have been found together with postcranial bones surrounded by rocks (a roof-fall accident?), and in 1892 Hjalmar Stolpe found “… parts of a human skeleton, (some ribs and vertebrae, half a pelvis, both femora and the lower legs and fragments of an arm) brought together in a pile …” on the floor of the cave, probably in parcelle F or G. Stolpe interpreted these finds in terms of cannibalism, but it could perhaps have represented a skeleton ‘tied together’ in the same way as at Kambs, albeit disturbed. Stolpe also mentions numerous human bones, including skull bones showing signs of blows and burnt human bones, from F.11 (Schnittger & Rydh 1940:47-48). The latter human bones, which have not been possible to study and which may have been lost, could in fact belong to the same individuals as those analysed by us in the adjacent parcelle G.

It remains to be investigated whether such informal disposals of numerous dead individuals have been conducted also in other caves on the islands of Stora and Lilja Karlsö. Provided approximately the same number of
individuals were disposed of in each cave (there may be more individuals than these nine if also the Mesolithic levels in the other excavation areas in the Stora Förvar Cave are included), it would mean that perhaps as many as a hundred individuals are buried on these islands, which may have comprised an analogy to such burial islands as Jushni Olenij Ostrov in East Carelia or Téviec and Hoedic in France. Viewed from this perspective, people may have come from the dwelling sites on main Gotland to these 'islands of the dead' to bury their deceased relatives in 'sepulchral caves', which may partly have served the same function as later megalithic graves and catacombs or crypts. (Burials and scattered human bones are also known from Norwegian coastal caves, e.g. Vistehulen, Skipshelleren, Sauehelleren, Kvernevighelleren, Solsem-hulen and Storbåthallaren.)

However, only excavations of other caves on the Karlsö islands can confirm this alternative hypothesis, as well as reveal new details that could better assist in the difficult task of interpretation. For the time being it is perhaps best to work with the assumption that the identified individuals once lived in the cave. The presence of women and children, the thick cultural layer, the manufacturing and use of tools, the preparation of plenty of food, that is strong indications of common subsistence activities, together with the very rare occurrence of human bones and the presence of rich resources throughout the whole year, indicate that the occupation in the Stora Förvar Cave had a more permanent and important subsistence-economical character than merely a temporary hunting station, or a ritual burial cave.

ACKNOWLEDGEMENTS
We thank the staff at the Osteological Department of the Central Board of National Antiquities/the Museum of National Antiquities in Stockholm and the Gotland Historical Museum in Visby, as well as the leaders of the project Gotland's Stone Age, Dr. Inger Österholm and Prof. Göran Burenhult, for their kindness in permitting our analyses.

NOTES ON THE PROJECT
Christian Lindqvist's archaeological investigation of the artefacts and stratigraphy of the Stora Förvar Cave began under the direction of Professor Mats Malmer in 1981/82, and after 1991/93 osteological investigations of the faunal and human remains were continued under the supervision of Professor Torstein Sjøvold and Ass. Prof. Ebba During.

The research project, The Stora Förvar Cave and Gotland's peopling, faunal history and subsistence economy/diet development from the Boreal to the Subatlantic, initiated by Christian Lindqvist at the Osteological Research laboratory, Ulriksdal, in 1991, soon became a interdisciplinary joint project together with Ass. Prof. Göran Possnert, Ångström Laboratory (the former The Svedberg or Tandem Laboratory), Uppsala, and later also together with Professor Svante Pääbo, Zoological Institute, Munich University. Unless otherwise stated, all carbon isotope (AMS-datings and 13C) analyses of bone collagen have been conducted by Ass. Prof. Göran Possnert in Uppsala, and the osteological analyses have been conducted by Dr. Christian Lindqvist in Ulriksdal.

English revised by Laura Wrang.
REFERENCES

Breuil, H. 1909. Le gisement quaternaire d’Ofnet. L’Anthropologie Vol. XX.

Current Swedish Archaeology, Vol. 7, 1999

